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Abstract

Properties of inertial flow in microfluidic devices are exploited to aid in many biological and
manufacturing problems. However, there is a lack of theory to predict the focusing position of a
particle in these microfluidic devices. To aid in this, we derive two linear differential equations
to approximate the migration velocity of the particle flowing in fluid in a pipe of arbitrary
cross-section under the assumption that the particle radius is asymptotically small. In our
equations we replace the particle by a stresslet or a singular force. To aid our finite element
method software in accurately solving these equations, we introduce regularization terms and
show that these regularizations converge to well known results on an infinite plate. We then
extend our governing equations to a square channel and show good agreement with prior results.
To demonstrate flexibility of our method, we consider a pipe whose cross-section is a scalene
triangle. Now consider a rectangular cross-section with inertial fluid flow passing through. Due
to having inertial flow in the channel, the flow lacks fore-aft symmetry about obstacles placed
in the channel. Thus, some initial cross sectional portion of dyed fluid will deform to a new
shape once it passes a pillar in the channel. We focused our efforts on developing a method
that computes the optimal pillar configuration to reproduce a desired output shape. We used
the discrete Frećhet distance to compare our desired output shape to the output shape after
some pillar configuration. We then used this distance metric in a greedy algorithm, which was
efficient but not accurate enough at finding the best pillar configuration. Due to the difficulty
of converging to a global minimum, sweeping through all possible pillar configurations of an
intelligently sub-sampled data set proved very accurate but had a computational complexity
that increased exponentially with the number of pillars in the channel.

Keywords: Inertial Focusing Position, Mircofluidics, Migration Velocity, Microfluidic Pillars,
Pillar Sculpting

1. Introduction

The importance of flow with finite Reynolds number (1 ≤ Re ≤ 100) in micro-channels has
recently come into light. Unlike Stokes flow (Re� 1), suspended particles can cross streamlines
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resulting in net deformation of the flow. With Re � 2300, inertial flow is not operating within
the realm of turbulent flow, so our flow is deterministic. These properties have been shown to
have potential to aid in solving many biological and manufacturing problems.

One such application was discovered by Amini et al. [2]. They considered inertial flow in
micro-channels with cylindrical pillars placed within the channel to deform the flow. Due to the
deterministic mapping of fluid elements from upstream to downstream, Amini et al. [2] were
able to control the shape of fluid flow in a micro-channel using different pillar configurations. In
particular, they noticed that if the pillars were spread out enough (∼ 6-10 times the diameter
of the pillar), then the impact of each pillar became independent of one another. This process,
known as pillar sculpting, has become increasingly important in biological and manufacturing
fields [1]. Paulsen et al. [11] showed that fluid sculpting of a UV sensitive inert fluid can be
used to create 3-D objects at higher resolution than layer-by-layer 3-D printing.

Another important application was discovered by Sollier et al [13]. They constructed ge-
ometries of micro-channels that would trap cancer cells in limit cycles which could significantly
benefit cancer detection. However, currently the main methods for constructing such a geome-
try is through trial and error. This could be improved on with better theoretical results of the
inertial focusing positions of particles in an arbitrary geometry. In the mathematical modeling
section we approximate the particle’s affect on the fluid as a singularity called a stresslet. We
used a finite element method (COMSOL, Los Angeles) to obtain the migration velocity of our
particle. As our finite element method does not have an extended finite element option, we
followed Cortez and Varela’s [6] formulation of a regularized stresslet with a small positive pa-
rameter ε. We also considered an equivalent PDE which replaces the stresslet with the forcing
term in Stokes flow that gives rise to the stresslet and a regularized Gaussian that converges
to the desired force as σ → 0, where σ is the standard deviation for the Gaussian. Then we
will show that as σ → 0 and ε→ 0 for both methods, that our migration velocity converges to
already known results for an infinite plate by Schonberg and Hinch [12]. Then we compare our
predicted inertial focusing position to known results for the square channel. We then show the
generality of our method by predicting the inertial focusing position for a geometry that has not
been analytically solved: a scalene right triangle with length 1 and width 0.5. Our methods are
both acurrate and converge quickly (i.e. for the plane it took roughly 7 minutes per point and
in the triangle it only took 3 minutes per point).

Machine learning and optimization have also provided us with useful methods to describe
microfluidic flow past an arbitrary sequence of micropillars. Previously, in order to determine
the complex flow transformations, computationally expensive calculations were required. More
recently, it was discovered that by assuming that each individual pillar is sufficiently far away
from the next one that their effects do not interact so that we can treat each pillar as a state
transition matrix [16]. By pre-computing these matrices (through computing the advection of
fluid particles around a specific pillar and creating the transition matrix that describes these
advections) for each pillar diameter and computing the matrix multiplication, complex pillar
configurations can be rapidly simulated. The next problem to be optimally solved is the inverse
problem of finding the optimal micropillar sequence that creates a specified flow pattern. Un-
optimized approaches to solving this problem required user insight and interaction but as more
complex flow fields are desired, user interaction becomes less practical. A genetic algorithm
applied to this inverse problem has successfully found novel flow designs and has even been able
to decrease the number of pillars needed to sculpt a specific flow field [14, 16]. More recent
approaches to solving this problem have shown that deep learning is much faster at solving this
inverse problem than user interaction [15]. In terms of deep learning, it has been shown that
more accurate methods can be created by intelligently sampling the training data [15]. Ap-
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plying intelligent sampling techniques to deep learning approaches has been shown to provide
competitive prediction accuracy while drastically reducing computation time when compared
with the genetic algorithm [10]. In the machine learning section, we used a greedy algorithm
to approach the inverse problem. We also applied Principal Component Analysis (PCA) and
K-Means Clustering to the advection data to reduce the dimension of the data set and extract
characteristic features. We then used this information to intelligently sub-sample our set of
pillars, and examine how accurately a complete sweep of our sub-sampled data set could predict
a pillar configuration that outputs a shape close to some target shape.

2. Machine Learning

Figure 1: Schematic diagram of a microfluidic channel containing a single pillar.

2.1. Data

At the beginning of this project, we received a large data set with data describing the flow
past a single pillar1. The data set included flow past 3224 different pillars for a fixed channel
aspect ratio (the height divided by the width of the channel, h/w) and varying Reynolds number
(Re), pillar diameter aspect ratio (the pillar diameter divided by the width of the channel, d/w),
and pillar location (the pillar location divided by the width of the channel, y/w). See figure (1)
for a schematic diagram describing each of these different parameters. Each data point provided
us with the necessary vectors that described how flow from behind a specific pillar in the channel
would deform to a new shape after the pillar. Plotting a single data point allows us to visualize
a quiver plot with deformation vectors that describes how a shape changes. See figure (2) for an
example quiver plot of a data point with pre and post pillar shape of dyed fluid. We were able
to extend the data set to 6448 pillars since the original data only included pillars on the right
side of the channel (by symmetry, we were able to extend our data set to include the pillars on
the left side of the channel)

1The advection data that we analyzed was given to us from the Di Carlo lab at the University of California,
Los Angeles and the Baskar group at Iowa State University.
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Figure 2: Quiver plot with original shape before the pillar and after the pillar for pillar described by the
parameters h/w = 0.25, d/w = 0.76, y/w = 0, Re = 40. The blue arrows describe how deformation
vectors from before to after the pillar. The red dashed rectangle defines the outline of a shape of dyed
fluid before the pillar. The black shape defines the outline of the deformed shape after the pillar. Note
that we are only plotting the top half of the quiver plots since the data is symmetric about the top and
bottom of the channel.

2.2. Dimensionality Reduction: PCA

Being that each data point from the data set was described by a vector with 161802 entries,
we employed a common machine learning technique commonly used for dimensionality reduction
and feature extraction of our data set. We used Principal Component Analysis (PCA) to
visualize our data in a reasonable dimension and learn more about the data set. PCA is a
techinque that computes the eigenvectors of the covariance matrix of the data set. The first
few eigenvectors correspond to the vectors that describe the most variance in the data (we call
those vectors the Principal Components of the data). Once we find the smallest number n of
Principal Components that describe a certain threshold percentage of the variance of the data,
we compute the projection of each data point onto the new space defined by the n Principal
Components (called the coefficients in the 1st through nth P.C.’s).

2.3. Discrete Fréchet Distance

To reconstruct a desired flow shape by predicting a specific pillar sequence, we needed a
distance function to compare two flow shapes. The distance function that we used is the discrete
Fréchet distance, which is a metric on the space of polygonal curves. We applied this metric by
taking the boundaries of two different flow shapes and computing their discrete Fréchet distance
with the algorithm provided by Eiter and Mannila [7]. It should be noted that the discrete
Fréchet distance is sensitive to scaling and rigid motions of polygonal curves (i.e. translations,
rotations, and reflections). For some applications this sensitivity may be desirable, but for others,
the user may want the distance to be invariant with respect to scaling or rigid motions. In this
case, the user must normalize the polygonal curves they want to compare before computing their
distance. Ultimately it is up to the user to decide which predicted flow shapes are acceptable.
For this project, we chose to not renormalize the flow shapes to account for scaling and rigid
motions.

2.4. Greedy Algorithm

We approached the problem of determining a possible pillar configuration for a given desired
flow shape by implementing a greedy algorithm. Greedy algorithms complete a given task by
choosing the locally optimal choice at each stage. In our algorithm, we started with a target
outlet flow shape and some connected inlet flow shape, then deformed the inlet flow once for each
of the possible pillars in our data set. Note that based on validation of theory using numerical
results we were able to determine that mass-flow is conserved when it deforms around some
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obstacle in a microfluidic channel. Thus, for a specified desired flow shape, we simply computed
the mass-flow of the desired shape and computed inlet flow of rectangular shape that span the
whole height of the the channel2 with the same mass-flow for our Greedy Algorithm and also for
our sub-sampled sweep of the data set in Section 4.3. Then we calculated the discrete Fréchet
distance from our desired shape to each of the possible deformed shapes and chose the pillar
that corresponded to the minimum calculated distance. We then updated the inlet flow shape to
the deformed shape after the optimal pillar, then iterated the algorithm. We let the algorithm
run until either the distance from the predicted shape to the desired shape was less than some
ε > 0, or the number of predicted pillars was equal to some m ∈ N.

The problem with using a greedy algorithm is that it will not necessarily find a global
optimum. To account for this, we added a random component to our algorithm: if the distance
between the desired shape and predicted shape after k pillars increased after adding the (k+1)th
pillar, then we replaced a random number of the first k pillars by randomly chosen pillars. The
idea here is that the random pillars would be able to push our predicted pillar configuration
towards a global optimum.

2.5. K Means

Considering that the number of possible pillars we can use is large (6448), we decided to
intelligently sub-sample from the data set in order to reduce the necessary computation and the
run time. We coupled a machine learning technique called K Means with the results of our PCA
to intelligently sample from the data. The K means algorithm is an iterative process that allows
us to separate our data set into k different means based on their location in the PCA space.

3. Mathematical Modeling

3.1. Statement of Problem

Consider an infinitely long pipe with an arbitrary cross section of characteristic length `.
In this pipe flows a fluid governed by Poiseuille flow. We then introduce a spherical particle
of radius a (much smaller than `) into our channel, which induces a disturbed flow in our
geometry. Additionally, we choose a lab reference frame such that the fluid flows in the z
direction. In addition, assume that the Channel Reynolds Number Rc = Um`

ν is finite, where
Um is the maximum background flow velocity, and ν is the kinematic viscosity of our fluid. As
our Channel Reynolds Number is too large to be approximated by 0, we see that our flow is not
operating within Stokes flow. Hence, we do not have the mirror symmetry and time reversibility
properties of Stokes flow, which forbids particles from crossing stream lines.

2The only inlet flow shape that engineers can currently create is a rectangle that spans the whole height of
the channel due to the small scale of microfluidic channels.
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Figure 3: An example of our reference frame in a rectangular cross section.

As our flow is not in Stokes flow, we see that particles can move across stream lines. We define
the migration velocity of a particle to be the velocity of the particle in the x and y directions.
We present a theory of approximating the leading order term of the migration velocity of a
particle with the assumption that the particle Reynolds number Rp = (a` )2Rc is asymptotically
small for an arbitrary geometry governed by the above assumptions. From these assumptions,
we derive a linearized Navier–Stokes equation that governs the migration velocity. Then as our
geometry is time dependent due to the movement of the particle, we introduce two methods of
replacing the particle with a stresslet or a singular force, so that we can have a fixed geometry.
We will show that this equation gives good results in comparison to well known results for an
infinite plate and a square channel. Note that this method can be extended to solve for the
inertial focusing position of a particle by calculating migration velocities on a grid of points and
determining stable equilibrium.

3.2. Governing Equations

Let our lab frame have Cartesian coordinates such that the fluid flows in the z direction and
the cross section is the span of the x and y directions. Let u be the total velocity of the channel,
ρ the density of the fluid, µ the fluid viscosity, and p the pressure. We assume that µ and ρ are
constants and that our flow is incompressible (∇ · u = 0). If our sphere of radius a travels with
velocity ũs and rotational velocity Ω, then from the incompressible Navier–Stokes equations, we
have the following governing equations:

ρ
( ∂
∂t

u + u · ∇u
)

= −∇p+ µ∇2u (1a)

∇ · u = 0 (1b)

u = 0 on walls (1c)

u = ũs + Ω× a on particle surface (1d)
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Notice that due to the final boundary condition, our geometry is time dependent. We then
decompose the total fluid velocity as

u = u + u′,

where u is the background Poiseuille flow, and u′ is the disturbed flow caused by the particle.
With this decomposition, our momentum equation (1a) becomes

ρ
( ∂
∂t

(u + u′) + (u + u′) · ∇(u + u′)
)

= −∇(p′ + p) + µ∇2(u + u′) (2)

As our background flow (u) solves Navier-Stokes equation, we can reduce (2) to

ρ
( ∂
∂t

u′ + u · ∇u′ + u′ · ∇u + u′ · ∇u′
)

= −∇p′ + µ∇2u′. (3)

We now transform our coordinates to a moving reference frame traveling in the z direction
with the particle, with speed ũs · ez ≡ us. Explicitly, if (x, y, z, t) are the lab coordinates, and
(x′, y′, z′, t′) are the new coordinates, then x = x′, y = y′, t = t′ and z′ = z −

∫ t
0 us(t

′′)dt′′. Our
derivatives will then change:

∇x → ∇x’

∂

∂t
→ ∂

∂t′
− us · ∇x’,

where us = usez. Note that while we are in a moving frame, we are measuring velocities with
respect to the lab frame. With this our momentum equation becomes:

ρ
( ∂
∂t

u′ − us · ∇u′ + u · ∇u′ + u′ · ∇u + u′ · ∇u′
)

= −∇p′ + µ∇2u′ (4)

Next, let us be the Poiseuille flow evaluated at the center of the sphere, and u′ = u− us be
the background flow velocity measured with respect to the moving particle. By decoupling the
background flow, we can write (4) as

ρ
( ∂
∂t

u′ + (us − us) · ∇u′ + u′ · ∇u′ + u′ · ∇u + u′ · ∇u′
)

= −∇p′ + µ∇2u′ (5)

The next step is to nondimensionlize this equation, expand variables in terms of a, and
approximate to obtain a linear equation. Consider the nondimensional variables

r∗ =
r

l
t∗ =

UmtRp
l

u∗ =
u

Um
p∗ =

pl

µUm
.

Note that the time is scaled by Rp because the time scale at which the disturbed velocity changes
in (5) should be of order Rp. This is because the disturbed velocity will only change over time if
the particle migrates, and if the radius of the particle goes to zero, we should see no migration.
Our derivatives will change again:

∇x →
1

l
∇x∗

∂

∂t
→ UmRp

l

∂

∂t∗
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Replacing (5) with these nondimensional variables, replacing all velocities u with Umu
∗ and

getting rid of stars, we have(
Rp

∂

∂t
u′ + (us − us) · ∇u′ + u′ · ∇u′ + u’ · ∇u + u′ · ∇u′

)
= −∇p′ +∇2u′. (6)

Following [12] we can approximate the unknown velocities and pressures in terms of α and
Rp. We assume:

u′ ∼ αRpu′0 (us − us) ∼ αRp(us − us)0

p′ ∼ αRpp′0

Plugging in these expansion into (6), we have that (6) becomes

α2R2
p

( 1

α

∂

∂t
u′0 + (us − us)0 · ∇u′0 +

1

αRp
(u′0 · ∇u′0 + u′0 · ∇u0) + u′0 · ∇u′0

)
= αRp(−∇p′ +∇2u′)

Expanding this out and only considering first order terms, we arrive at(
u′0 · ∇u′0 + u′0 · ∇u0

)
= −∇p′ +∇2u′.

We then redimensionalize this to get the following dimensional linear equation

ρ
(
u′ · ∇u′ + u′ · ∇u

)
= −∇p′ + µ∇2u′ (7)

We also have the following boundary and incompressability conditions (ignoring particle rota-
tion):

u′ = ũs + um − ū on the boundary of the particle (8)

u′ = 0 on channel walls and as r →∞
∇ · u′ = 0

Our next step is to get rid of the boundary condition on the surface of the particle (8).
Batchelor [3] presents an approximation for the disturbed velocity field due to a sphere in shear
flow that is force and torque free. We will denote this approximation as ustr This velocity
satisfies the following Stokes equation with a singularity:

∇pstr = µ∇2ustr + fstr, (9)

where fstr is singular force acting at the location of the particle. By following Chwang and Wu
[4], we see that fstr is the symmetric portion of the derivative of the Dirac delta function.

We use this to approximate the boundary condition on the particle (8) by the condition that

u′ ∼ ustr for a� r � ` (10)

Next we get rid of this boundary condition by adding the stresslet forcing term fstr to the
momentum equation (7). So that our final governing equations become:
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ρ
(
u′ · ∇u′ + u′ · ∇u

)
= −∇p′ + µ∇2u′ + fstr (11)

u′ = 0 on channel walls and as r →∞
∇ · u′ = 0

To implement these equations into COMSOL we used two different techniques. In the first
method, we decouple our disturbed velocity field into a regular and singular portion and solve
for the regular part. The second method directly applies the singular force in equation (11) into
COMSOL. While implementing these singular terms into COMSOL, we found that our results
were not very accurate. We fix this discrepancy by introducing a regularized stresslet and by
approximating our singular force by a Gaussian. We will show that our approximations converge
for well known results for infinite plate channels.

3.3. The stresslet method

For this method, we decouple the disturbed velocity u′ as

u′ = ustr + v,

where ustr is the stresslet velocity and v is the regular part of the disturbed velocity. Our
momentum equation and boundary conditions become:

ρ
(
u′ · ∇u′ + u′ · ∇u

)
= −∇(pstr + pv) + µ∇2(ustr + v) + fstr (12)

v nonsingular as r → 0 (13)

v = −ustr on walls

We can get rid of the stresslet terms on the right side of (12) by using the definition of of the
stresslet in (9). So our final momentum equation becomes

ρ
(
u′ · ∇(ustr + v) + (ustr + v) · ∇u

)
= −∇pv + µ∇2v. (14)

By Chwang and Wu [4] we have an explicit formula for the velocity field of our stresslet,
which is given by

ustr =
−5a3

2r5
(γxxzr + γyyzr),

where γx = ∂xu, γy = ∂yu, and r =
√
x2 + y2 + z2. We can now solve for the regular part of

the disturbed flow v. By Schonberg and Hinch [12], v evaluated at center of the sphere is the
migration velocity.

We found significant discrepancies between our results compared to Schonberg and Hinch
[12] when we implemented equation (12) into our finite element solver. We hypothesized that
this was due to the singularity of our stresslet. To fix this we used a regularization method as
described in [5].

This regularization method approximates the Dirac delta in the singular forcing term by a
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blob function. We follow Cortex and Varela [6] to approximate our forcing term by:

φε(r) =
15ε4

8π(r2 + ε2)7/2

According to Cortex and Varela [6] our regularized stresslet velocity field’s ith component is

ui =
H′2
r

xixjxkZjk + (H2 +
H′1
r

)xkZik,

where

∇2G = φε ∇2B = G

H1(r) = r−1B′ −G H2(r) = r−3(rB′′ −B′)

and

Z =
10a3π

3

 0 0 γx
0 0 γy
γx γy 0

 .

We solved for B and G in R3 by noticing that our blob function is radially symmetric, which
reduces the Laplace equation to an ordinary differential equation.

Hence, our regularized stresslet is

ustr =
−5a3

4(ε2 + r2)5/2

 2xz(γxx+ γyy) + ε2γxz
2yz(γxx+ γyy) + ε2γyz

2z2(γxx+ γyy) + ε2(γxx+ γyy)

 .

Note that when ε = 0 this coincides with the non-regularized stresslet velocity field. In our
results section, we show that as ε goes to zero, our results for the infinite plan converge to well
known results.

3.4. Dirac Delta function method

If we will modify the Navier–Stokes equation the same way as before (12), but we replace
the boundary condition with a singular force. Instead of looking at the decomposition of the
disturbed velocity, we calculate the disturbed velocity directly.

Rc

(
ū′ · ∇u′ + u′ · ∇ū′

)
= −∇p′ +∇2u′ + F (15)

∇ · u′ = 0

u′ = 0 on the boundary

with

F = −10πγ

3
(∂zδ(x− xs)ex + ∂xδ(x− xs)ey), (16)

where δ is the Dirac delta function. We would like to know if we can determine the migration
velocity using this governing equation directly.

In order to see how COMSOL Multiphysics deals with singularities, we first test it by solving
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a 3-Dimensional Stokes equation with a pointwise force at the center of the cylinder pipe:

−∇p = µ∇2u + F, (17)

where the singular force is of the form F = δ(x − xs)ez, located at x = xs with direction
along the streamline. In COMSOL, the pointwise weak contribution reads as test(w) at the
origin. We set no-slip boundary condition on the wall of cylinder pipe, and periodic boundary
condition on both ends of the pipe to model an infinite pipe. A pointwise pressure constraint
is imposed on one point at the end of pipe. By comparing the velocity field in the y direction
along three cut lines in the cylinder with results from [9], we can see from that the numerical
results matches well with the analytic results far away from the singularity. (see figure (4)).
However, as we approach the singularity, our results becomes inaccurate and very dependent on
the mesh. In general, COMSOL Multiphysics deals with Dirac Delta Function very well when
we are sufficiently far away from the singularity.
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(b) Using Gaussian approximation
Figure 4: Velocity field along different cut line in the cylinder pipe of stokes flow due to stokeslet in a pipe.
The lines represent data from [9], while circles and triangles are results from our numerical experiments

Next, we set up a numerical experiment based on the singular force is of the form (16).
The forcing term F, when implemented in COMSOL, reads as a point-wise weak contribution
−10πγ

3 (test(uz) + test(wx)). We set up extremely fine mesh near the particle’s location with
finite element size of 1× 10−5 in order to get a better resolution of the singularity. To evaluate
the the migration velocity, we have two approaches. One way is to evaluate u at the location of
the particle. Another way to approximate the migration velocity u is to implement the volume
average of velocity over a sphere centred at the particle’s center with some radius r = rs. This
average should approach the migration velocity since the stresslet (ustr) is an odd function so
when integrating u = v + ustr, everything but the regular part drops out. However, due to
finite mesh and the way that COMSOL deals with derivatives, we can’t get enough points to
resolve the singularity; neither direct evaluation of u nor the volume average of u gives a good
approximation. Both depend on the mesh near the singularity and rs. For example, in Figure 5,
it shows the x-direction disturbance velocity along a cutline through the particle’s center along
the streamline direction. It is symmetric and we expected the integration to cancel out the ustr
portion and give an approximation of u at x = xs. But near the singularity there are only a
few points, u is not resolved and the numerical errors are significant. Therefore, we need to
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Figure 5: X-direction Velocity along the cutline

regularize the forcing term to get COMSOL work. A direct approach to approximate the Dirac
delta function is to use the Gaussian distribution and send its variance σ → 0.

δ(x− xs) = lim
σ→0

fσ(x− xs) = lim
σ→0

1

2σπ1/2
exp (−(

x− xs
2σ

)2) (18)
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(a) Gaussian distribution
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(b) Derivative of Gaussian distribution
Figure 6: Gaussian distribution and its derivative for different value of deviation σ

The derivative of Dirac delta function will be approximated by the derivative of the Gaussian
(see figure (6)). We also implement the Gaussian approximation to replace the Dirac delta func-
tion in the cylinder pipe, and the result agree with the existing data (see figure (4)). Therefore,
instead of having a pointwise weak contribution, the approximation expressed as the derivative
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of the Gaussian distribution will act as a volume force in the system. The force is of form

F = −10πγ

3
(∂zfσ(x− xs)ex + ∂xfσ(x− xs)ey). (19)

We will present numerical results via Gaussian approximation in later section.

4. Machine Learning Results

4.1. PCA

By applying PCA on the whole data set, we find that 97.02 percent of the data can be
described by the first three Principal components. We plot the coefficients of the data set in the
space of the first two Principal Components for visualization in Figure 7. The PCA is able to
pick up varying pillar diameter (larger pillars tend to be further from the origin) and varying
pillar location (similar pillar locations tend to be along the same polar angle from the origin)
but does not pick up varying Reynolds number since there generally does not tend to be any
sort of kernel function that can separate data for different Reynolds numbers. Being that a large
percentage of the data was described by the first two Principal Components (94.64 percent), we
examined the first few Principal Components by plotting them each as a quiver plot in a cross
section in the channel. The first four Principal Components are plotted in Figure 8. The first
four Principal Components of our data set were used as motivation for the K Means Clustering
that we describe in section 2.5. The main motivation comes from the fact that the PCA picked
up the most variation in the data with the first two Principal Components (see Fig. 8a and
Fig. 8b) which contained a single node in the center of the channel and two side-by-side nodes
with opposite rotations, respectively.

Figure 7: Coefficients of all 6448 data points in the space of the first two Principal Components. Each axis
label describes how much variance in the data set is described by each Principal Components, respectively.
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(a) Principal Component 1 (b) Principal Component 2

(c) Principal Component 3 (d) Principal Component 4
Figure 8: Plots of the first 4 Principal Components as quiver plots in a channel cross section.

4.2. Greedy Algorithm

To test our greedy algorithm, we first wanted to check the assumption that minimizing the
discrete Fréchet distance from the deformed flow shape after each pillar to the desired shape
will produce a predicted shape that is close enough to the desired shape. We checked this
by first taking all pillars of a fixed Reynold’s number, resulting in a sample of 1612 pillars,
randomly subsampling the number of pillars from 1612 to 50, and then producing a flow shape
from a random sequence of three pillars. We then found the deformed flow shapes from all
combinations of three pillars from our 50-pillar data set (resulting in 503 flow shapes) and
calculated the distances from each of these shapes to our initial randomly generated shape.

Figure 9: Discrete Fréchet distance after one pillar vs distance after three pillars. The green dot corre-
sponds to the smallest distance and the pink dots correspond to the smallest 10 distances.

From figure 9 we see that choosing the pillar with the smallest initial distance after the first
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pillar will not always converge to a global optimum. As stated in section 2.4, to ”push” the
predicted pillar configuration towards a global optimum, we introduced a random component
to our greedy algorithm. We did this in two ways. First we calculated the distance from the
predicted flow shape after each pillar to the desired flow shape, and if the distance from the
kth pillar to the (k + 1)th pillar increased, then we randomly replaced a random number of
any of the first k predicted pillars. For our second method, instead of replacing any of the
previous k pillars, we only allowed for random replacement of the pillars in the sequence that
cause the largest change in distance. We tested both of these replacement schemes to recreate
a ’U’ shape3.

Figure 10: Plot of (the right halves of) the target ’U’ shape and ’U’ shapes predicted by the greedy
algorithm. The solid red shape is the target ’U’ shape (the shape we want to recreate from our algorithm),
the blue dashed shape is the one obtained by randomly replacing any pillars, and the green dotted shape
is obtained by randomly replacing the pillars that cause the largest change in distance. The discrete
Fréchet distance between the blue dashed shape and the red solid shape is 0.0514 whereas the distance
from the green dotted shape to the red solid shape is 0.0704.

From our comparison of the different random replacement schemes in our greedy algorithm,
we saw that the method of replacing any of the previous pillars was slightly better than only
replacing the pillars that caused the largest change in distance. However, the ’U’ shape obtained
from this method was still not close enough to the target shape.

4.3. Using K Means to reduce the data set

The results of our greedy algorithm imply that attempting to find the best combination
of pillars to produce a specified desired shape cannot be based on minimizing the the distance
after each pillar. This is further emphasized by Figure 9 since we see that the minimum distance
after 3 pillars does not correlate with the minimum distance after the first pillar. Even randomly
replacing 100 different pillars may not help us get from a local minimum to a global minimum.
Consequently, we investigated other techniques to include in our pillar predicting algorithm that
satisfy two criteria: (1) Faster than a genetic algorithm utilized in [14] and (2) Predict pillar
configurations of the same or better accuracy than the genetic algorithm. Better accuracy in
our sense is defined as having an output shape that has a smaller distance than the genetic
algorithm and/or requires less pillars to sculpt the same shape.

To satisfy the two above criteria, we decided to intelligently sub-sample from the data set
and simply run a sweep of all possible pillar combinations (with a max number of pillars N)
of the sub-sampled set to find the best pillar configuration. Note that simply applying the
K Means Algorithm described in Section 2.5 on Figure 7 for any number of means does not
accurately cluster the data. The reason for this is because the data points must preliminary

3The pillar configuration used to create the ’U’ shape was obtained from the Di Carlo group at UCLA using
8 pillars.
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be separated into 4 classes and then compute K Means on each of those classes. The classes
are as follows: one clockwise node, one counterclockwise node (as in Fig. 8a), two nodes with
a clockwise one on the left and a counterclockwise node on the right (as in Fig. 8b), and two
nodes with a counterclockwise one the the left and a clockwise node on the right. For a fixed
Reynolds number (Re = 30), we plot the four classes in the space of the first two Principal
Components in Figure 11. Note that the advantage of computing K Means on the space of the
first two Principal Components is that the PCA tended to have similar quiver plots in spatially
similar locations. By considering these four classes as four distinct data sets and computing
the K Means Algorithm on each of them individually, we were able to cluster the data more
accurately. For each of the Reynolds numbers in our data set (Re = 10, 20, 30, 40) we could
scale the number of pillars to use in our algorithm from 1612 different pillars to around 60
characteristic pillars (including 30 large and 30 small diameter pillars) that describe most of the
data set.

Due to the fact that we want to sweep through all possible combinations of a sequence of
m pillars from our reduced data set (consisting of N pillars), the computation scales with Nm

(thus, decreasing N significantly decreases computation time). Additionally, considering the fact
that the larger pillars are the ones that have the most impact on deforming our initial shape,
we can simply sweep through the 30 characteristic pillars with large diameter. As a second
attempt to recreate the ’U’ shape in Figure 10, running a simple sweep of all combinations of
only two pillars from the sub-sampled data set produced the results in Figure 12. By comparing
the results in Figure 10 from the Greedy Algorithm and in Figure 12 from a sweep of the sub-
sampled data set both visually and quantitatively (using the Frećhet distance), we see that the
sweep does a much better job of predicting the optimal pillar configuration.

The advantage of sweeping through the reduced data set is that it allows us to find the
best pillar configurations using less pillars. For instance, the Greedy Algorithm’s best solutions
(plotted in Figure 10) took 8 pillars to find a reasonable shape whereas a Genetic Algorithm
also used 8 pillars to make the ’U’ shape. Sweeping through the sub-sampled data set of large
pillars produced the ’U’ shape in Figure 12b using only two pillars. Using less pillars minimizes
the amount of diffusion that the dyed portion of fluid experiences and the cost of engineering a
channel with the necessary channels.

One main drawback of using this parameter sweep method to find optimal pillar configu-
rations is that the computation time scales exponentially with the max number of pillars in
the sequence. For more complex shapes, such as the letter ’A’ or ’M’, this approach does not
efficiently predict optimal pillar configurations since we would ideally want to use more large
pillars than is reasonably computable using this method.

Overall, doing a sub-sampled sweep of possible pillar configurations is efficient for nice shapes
such as the letter ’U’ but not for more complex shapes. Due to the fact that the greedy algorithm
scales linearly while the sub-sampled sweep scales exponentially with the number of pillars in
a sequence, a potential area of future work would be to combine these two methods to find a
method that has lower computational complexity than the sweeping method but is more accurate
than the greedy algorithm. There is also potential in adding pillars of smaller diameter into our
analysis.
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Figure 11: Plot of data for Reynolds number 30 on the space of the first two Principal Components. The
four colors correspond to a different class of the data. Red points corresponds to having a counterclockwise
node on the left and a clockwise node on the right. Blue points correspond to having only a clockwise
node in the center of the channel. Pink points correspond to having a clockwise node on the left and a
counterclockwise node on the right. Green points correspond to having only a counterclockwise node in
the center of the channel.

(a) Visual comparison between our target shape (blue) and the shape produced by the Greedy Algorithm
(red).

(b) Predicted ’U’ shape (c) Target ’U’ shape
Figure 12: Comparisons between our target ’U’ shape and the ’U’ shape predicted by a sweep of all
combinations of two pillars from our sub-sampled data set of 30 pillars. The red shape is the target ’U’
shape while the blue shape is the best shape using only two large pillars. The Frećhet distance between
the two shapes is 0.292. The image in (a) contains only the boundary of the two shapes superimposed,
for visual comparison. The images in (b) and (c) contain the same shapes extended by symmetry, filled
in and rotated by 90 degrees clockwise.
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5. Mathematical Modeling Results

5.1. Two Parallel Infinite Plates

We consider two infinitely long parallerl plates separated by length `. For our case, we
nondimensionalized so that ` = 1. As it’s not possible to set up two infinitely long plates in
COMSOL, we instead constructed an extruded rectangle of dimensions 1 × 4 × 10. We chose
to have our particle fixed at y = 2, z = 5, and varying the x position. Due to symmetry, our
migration velocity in the y direction should be 0. Then we chose periodic boundary conditions
on two sides of the wall to replicate an infinitely long plate. In addition, we also tested open
boundary and symmetry (slip) boundary conditions as a replacement for periodic boundary
conditions and saw only slight differences between the three boundary conditions. As our finite
element method uses a quadratic basis, we see that it is not equipped to deal with singularities.
To deal with this, we regularized both our stresslet and forcing term. In section 5.1.1 we will
show that without a regularization term, our answers are inaccurate. In section 5.1.2 we find
that our regularization terms significantly increase the accuracy of our results. Note that the
figures below are describing the migration velocities in the x direction because the migration
velocity in the y direction should be 0 due to the symmetry of our geometry. In addition, after
adding a regularization term, we see that the y component of our migration velocity was always
less than 3 percent of our x component, which arises from numerical error.

5.1.1. The Stresslet Method Without Regularization

For our migration velocity to be comparable to Schonberg and Hinch’s [12] results for an
infinite plate, we had to non-dimensionalize our migration velocity v by dividing it by a3Rc

(equivalently αRp). Note that we chose our geometry and non-dimensionalization such that
` = 1, which means α = a.

We show the results of implementing the stresslet method without a regularization term on
Figures 13a and 13b. On COMSOL, we set our geometry as a 1× 4× 10 rectangle with periodic
boundary conditions to simulate two infinitely long plates. For both simulations, we set up a
1× 4× 10 rectangle in the x, y and z direction respectively. Note that we only consider half the
domain due to the symmetry of our geometry.

For figure 13a we sampled 10 points on the channel with y and z being fixed at y = 2 and
z = 5. We varied x from .1 to .5 in increments of .05. While in figure 13b, we sampled it exactly
the same as figure 13a except we only varied x from .1 to .5 in increments of .1.

Note that in figure 13a, the channel Reynolds number is 1, while in figure 13b, the channel
Reynolds number is 75. Notice that the closer we were to the wall, the more inaccurate our
results are when compared to Schonberg and Hinch [12]. However, as we got further away from
the wall, our solutions become a better approximations of the migration velocities. We will show
in section 5.1.2 that this discrepancy is due to COMSOL’s inability to deal with points near
singularities. We noticed that for the non-regularized stresslet method, our migration velocities
in the y direction were large (∼ 10 percent of the x migration velocity). These problems will
be remedied in the following section by the introduction of regularization into our governing
equations.

In addition, we chose a = .05 for the entire simulation. It does not matter what value of a
is inputted into the equation as it does not effect the results because our governing equation is
linear and ` = 1, which allows us to show that our migration velocity is independent of a. But
note to obtain our governing equation, we had to assume that a was asymptotically small in
order to neglect terms.
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Known Results
 = 0

(a) Rc = 1 with no regularization

Known Results
 = 0

(b) Rc = 75 with no regularization

Figure 13: Migration Velocity in an infinite plate with no regularization

5.1.2. The Stresslet method With Regularization

Now we introduce regularization terms into our stresslet and fstr. In particular, we replaced
our stresslet with the regularized stresslet and our fstr with a derivative of a Gaussian. These
regularization terms tremendously improved the accuracy of our migration velocity compared
to Schonberg and Hinch’s results [12]. We tested ε, σ = .1, .01, .001, .0001, but found that our
regularization term had no effect for when our small parameter was smaller than .001.

As seen in Figure 14a and figure 14b, we see that the implementation of a regularization
term significantly increases the accuracy of our migration velocity compared to Schonberg and
Hinch’s values [12]. We can even see that as ε→ 0, our solution converges to the known results.

For Figure 14b we used the regularized stresslet method, and we sampled points with y, z
being fixed at 2, 5 respectively and allowing x to vary from .1 to .5 in increments of .05. While
in figure 14a, we followed figure 14b except we varied x from .1 to .5 by increments of .1

Note that as we kept y fixed at 5, by the symmetry of the geometry, we should have the
migration velocity in the y direction be 0. Instead in our simulation, our y component of the
migration velocity was almost always less than 3 percent of our x velocity, which we chalked
up to numerical error. Consider figure 15a and 15b to see our migration velocities in the y
direction with singularity regularization. We see that in these figures the y migration values are
negligible.

Our numerical solver took roughly 7 minutes per point to converge on an infinite plate.
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Known Results
 = .1
 = .01
 = .001

(a) Rc = 1, ε = .1, .01, .001

Known Results
 = .1
 = .01
 = .001

(b) Rc = 75, ε = 0
Figure 14: Migration Velocity in an infinite plate with regularization

f(x) = 0
 = .001
 = .01

(a) Rc = 1, y migration velocity

f(x) = 0
 = .001
 = .01

(b) Rc = 75, y migration velocity

Figure 15: Migration Velocity in the y direction only

5.1.3. The Dirac Delta method

By implementing the Gaussian approximation and comparing it with existing results in [12],
we are able to see that they are consistent. In figure (16), we justify that the volume average
velocity makes sense. According to the figure, as rs → 0, the volume average of velocity over a
sphere centred at the x = xs approaches the direct evaluation of u at the location of the particle.
Therefore, we will simply use direct evaluation of u to calculate the migration velocity.

We also conduct numerical experiments to see how σ helps capture the migration velocity
effectively. From figure (17a), we can see that when σ gets smaller, the volume force approxi-
mates the exact singular force better, hence numerical result agrees with [12] result better. For
the sake of computational cost, we use σ = 0.01 in the following computation.

We also compare the numerical result for Re = 75 case, with the existing result as well as
the stresslet approach, and see figure (17b) they all match well.
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Figure 17: Migration Velocity Plot

5.2. Square Channel

5.2.1. The Stresslet Method

For a square channel, we did not have results we could compare our migration velocities to, so
instead we used the migration velocity to predict inertial focusing positions with the assumption
that α � 1. For our simulation, we choose Rc = 80, and ε = 0.01. We chose ε = 0.01 because
based on figures 14b and 14a, ε = 0.01 is a good approximation to the true migration velocity.
In addition, we choose Rc = 80 to compare our inertial focusing positions with Hood et al [8]
where they had a = .11,Rc = 1. Our square channel was a 1 × 1 × 10 rectangular box in the
x, y and z direction respectively.
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We chose to run a grid from x, y = .1 to x, y = .5 with z being fixed at z = 5. In particular,
due to the symmetry of our channel, we only had to consider one quadrant of the cross section.
We then plotted a velocity field of the data on figure 19. Then we used the symmetry of the
square channel to obtain the magnitude of the migration velocity for x, y ∈ [.1, .9]× [.1, .9]. We
used this information to create figure 18, which is a 2D grid that has the migration magnitude
as the color.

Notice that figure 19 and 18 predict an unstable equilibrium position at roughly (.15, .15),
(.5, .5), (.15, .85), (.85, .15) and (.85, .85). In addition, there appears to be a stable equilibrium
position at roughly (.15, .5),(.5, .15),(.85, .5) and (.5, .85). These inertial focusing position agree
with the results found by Hood et al [8] for Rc = 80 and a = .11. In addition, on figure 20 we
plotted the contour plot of the migration velocity magnitude.

Figure 18: Migration magnitude of square channel with Rc = 80 Filled in circles represent stable equi-
librium, while circles represent unstable equilibrium. The red dashes represent the location of the quiver
plot in the figure below.
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Figure 19: velocity field for a 1× 1× 10 Square Channel for x, y ∈ [.1, .5]× [.1, .5] with Rc = 80 Filled in
circles represent stable equilibrium position, while open circles represent unstable equilibrium
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Figure 20: Contour of Migration Magnitude with Rc = 80. Filled in circles represent stable equilibrium
points, while open circles represent unstable equilibrium points.

5.2.2. The Dirac Delta method

We implement the same experiment for an infinitely long square channel, and calculate the
migration velocity in arbitrary positions of the cross section. The results are consistent with
those using the stresslet method. See figure (21), the x, y-axis represents the location of a
[−0.5, 0.5] × [−0.5, 0.5] channel. From figure (21), we are also able to predict the equilibrium
position in the cross section.

5.3. Right Triangle with length 1 and width 0.5 Channel

To show case the generality of our method, we use our governing equations with COMSOL to
predict the inertial focusing position of a non-symmetric geometry, which has not been studied
before. In particular, we considered a right triangular channel with dimensions 1× 1/2× 10 in
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Figure 21: Migration velocity Comparison, Re=75

the x, y and z component respectively. As usual, we fix the z position of our particle at the
center-line at z = 5. We set our Reynolds channel number to 1 with ε = 0.01.

We swept through points the x, y coordinates for x ∈ (0.0375, .4) and y ∈ (0.05, .8) in
increments of .05 until we were .05 away from the boundary for y and similarly for x except we
also ran x at .0375, .075, .125, .175 ,and .225. Each point took COMSOL roughly 3 minutes to
solve, which overall took roughly 5 hours to obtain all the data. We plotted the quiver plot of
these points on Figure 22. The red lines indicate where the triangle is.

Based on the quiver plot in Fig. 22, there appears to be stable equilibrium points in a
neighborhood of (.2, .07) and (.1, .3), with an unstable one at (.185, .225). Due to our lack of
resolution, we could not pinpoint the exact location of the equilibrium points. In addition, as
this geometry has not been studied before, we have no solutions to compare our results to. This
shows the flexibility of our governing equations to deal with arbitrary geometries.
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Figure 22: Quiver Plot of 1 × 1
2 × 10 triangular channel with Rc = 1. Filled in circles represent stable

equilibrium points, while circles represented unstable equilibrium points.

6. Conclusion

We derived a governing equation for the migration velocity of a particle in an arbitrary
geometry with the assumption that Rp � 1. The time dependance of our boundary conditions
owing to a moving particle makes this computation very expensive. We remedied this by two
methods: one is by introducing a stresslet, and another is by introducing a singular point
force into our equation. However, these methods appeared inaccurate when implemented into
COMSOL. We fixed this by regularizing our stresslet and singular force. After regularization,
we show that our regularized governing equations approximate well-known results and that they
converge as our small positive regularization parameters go to 0. Then we extend this method to
a channel that has not been studied before. The main advantages of our method is that our
governing equation with the regularized methods are linear PDEs with a fixed geometry that
are non-singular. This allows numerical solvers to quickly and accurately solve the resulting
PDE. Indeed, our simulations on the infinite plate and the square channel took 7 minute per
point, while the triangle took 3 minutes per point.

In the machine learning section, we used the discrete Fréchet distance in a greedy algorithm
to solve the inverse problem of finding a pillar configuration to reproduce some target flow
shape. We saw that this does not always find a global optimum. To address this issue, we
randomly swapped pillars in the predicted pillar configuration in the hopes of decreasing the
distance from our predicted shape to our target shape. We found that randomly swapping
any of the previous pillars does better than only replacing the pillars that cause the largest
change in distance. To further improve our solution to the inverse problem, we implemented
Principal Component Analysis and K-Means clustering to intelligently subsample our set of
pillars to a set of approximately 60 characteristic pillars. We then did a complete sweep of all
possible configurations of m pillars, and found which of these pillar configurations minimized
the distance from our predicted shape to our target shape. We found that using this method
significantly improves the accuracy of our predicted shapes, while taking a relatively short
amount of computation time. However, this method is only viable for small values of m. Hence
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for future research, it will be valuable to test a combination of the greedy algorithm and a
complete sweep of the subsampled pillar set to solve for target flow shapes that require a large
number of pillars.

Appendix A. COMSOL implementation

Our code for comsol was created on COMSOL 5.3a under the Computational Fluid Dynamics
(CFD) Module. In COMSOL we created a 1 × 4 × 10 domain corresponding to x, y, and z
dimensions respectively. We then placed a point at the location (xs, ys, 5) to represent our
particle (which was used to probe values and refine the mesh).

We chose a coarse meshing for the rectangle, while we refined the mesh around the point as

Maximum Element Size 0.00187

Minimum Element Size 2.88× 10−5

Maximum Element Growth 1.05

Curvature Factor .2

The analytic normalized Poiseuille Flow in an infinitely long plane separated by one unit is
given by u = ez4x(1 − x). For more complicated cross sections, we used a Poisson solver to
determine the background flow.

We set the fluid properties as µ = 1 and ρ = Rc. In addition, we have for our initial values
u = 0 and p = 0. We set the two 1× 4 rectangles as outlets with a neutral boundary condition
p = 0. We set the two 4 × 10 rectangles as inlets with u = −ustresslet. We imposed periodic
boundary conditions on the final two walls to model infinitely long plates. In addition, we
changed our solver to P2-P1. This extends the FEM to a quadratic basis for the velocity, while
keeping a linear basis for the pressure. This step severely increases the accuracy of our result.
We also changed the convective term in COMSOL’s weak form into the one stated in deriving
the governing equation. Written compactly, we changed the following:

−ρ(u · ∇u · φ)→ −ρ(u′ · ∇u′ + u′ · ∇u) · φ,

where φ is the test function with three components, and we replaced u′ with ustr+u . We ran a
parametric sweep with the particle being centered at y = 2, while x was being varied. In addition,
we also took the spherical average around the point and saw that it did not significantly affect
the results. For our results to be consistent with Schonberg and Hinch’s result on an infinitely
long plate, we had to divide our velocities by a3Rc where a is the radius of the particle, and Rc

is the channel Reynolds Number.
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